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Abstract: The introduction of 2D materials in recent years has resulted in an emerging type of constructed structure 

called van der Waals heterostructures (vdseWHs) that take advantage of the 2D materials in forming atomically thin 

components and devices. The vdWHs are constructed by the stacking of 2D materials by van der Waals interactions 

or edge covalent boning. The electron orbitals of the 2D layers in vdWHs extend to each other and influence the 

electronic band structures of the constituent layers. The tunable optical response over a wide range of wavelengths 

(NIR to visible) can be obtained by assembling vdWHs by combining the monolayers. By application of 2D layers 

in vdWHs, p-n heterojunctions without lattice mismatch can be formed. The photodiodes based on the van der Waals 

interactions could be considered promising candidates for future optoelectronic devices. Furthermore, on-chip 

quantum optoelectronics can move to the next generation by using 2D materials in vdWHs. In this review, the vdWHs 

are introduced and their properties and applications in light-emitting diodes (LEDs) have been discussed. The 

vdWHs allow bandgap engineering, and hence, LEDs working in a range of wavelengths can be realized. The 

applications of vdWHs in forming atomically thin components in optoelectronic devices and LEDs have been 

addressed. 

Keywords: Van der Waals heterostructures, 2D materials, Band structure, Bandgap tuning, Light-emitting diode. 

 

1. INTRODUCTION 

A nanoscale LED is an essential component for 

future integrated nanophotonics. There have been 

great deals of efforts for realizing efficient, 

compact, electrically driven, and scalable light 

emitters which could be integrated with electronic 

elements in a chip [1]. Several materials including 

bulk III-V compound semiconductors [2], Ge  

[3, 4], and low-dimensional nanomaterials like 

nanowires [5, 6], quantum dots [7-14], and 

quantum wells [15, 16] have been used as the 

photonic sources. However, the need for high 

efficiency, low integration costs, and modulation 

speed require the application of new structures 

and materials for this purpose [1]. 

The research on 2D materials is inspired by 

graphene as a single atomic layer of carbon atoms 

[17-20]. A surprising number of research works 

have been conducted on 2D materials for different 

applications in recent years [21-24]. The 

properties of the 2D materials differ from those of 

their 3D counterparts which gives them the 

capability of creating emerging structures with 

different characteristics [25]. The 2D layers can 

be easily exfoliated from their corresponding  

bulk structure due to the weak van der Waals 

interactions between the layers. The van der 

Waals interactions between the layers in the bulk 

structure of 2D materials are in the range of  

40-70 meV while the interactions between the 

atoms in the layers are covalent [26].  

The 2D materials have a characteristic property of 

ultrahigh surface sensitivity with two exposed 

surfaces. Furthermore, they have a wide range  

of properties such as optical, electronic, and 

magnetic properties due to their different crystal 

structure and chemical composition of the in-

plane covalent crystalline sheets in the layered 

bulk materials. These unique properties have been 

the basic idea for the application of these 

structures as building blocks for the production of 

vertically stacked structures that take advantage 

of van der Waals interactions that exist between 

layers. These kinds of structures are called 

vdWHs [27].  

The approach for the production of complex 

architectures by these building blocks consists of 

the following steps: a) creation of various 2D 

structures by growth and/or mechanical 

exfoliation, b) optimizing of the structural, 

chemical, optical, and/or electronic properties 

through chemical functionalization, strain 

engineering, etc., and c) controlled multi-stacking 

of the 2D sheets into a 3D structure [28]. 

The 2D vdWHs have a robust light-matter 

interaction due to the following reasons: 

a) For most of the 2D layered materials, type II 
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band gap alignments can be seen if they are 

contacted in an atomically flat interface  

[29-31]. 

b) Elementary 2D layered materials show an 

intrinsic direct bandgap or a transition of 

indirect-direct bandgap when they are scaled 

down to a monolayer [29, 32-34]. 

c) The 2D configuration of the vdWHs results in 

a high specific surface area [29]. 

The need for ultrathin optoelectronic devices and 

on-chip quantum optoelectronics has led to the 

application of vdWHs in novel LEDs. The 

bandgap of the vdWHs can be tuned through the 

application of a different combination of the 2D 

layers, applying strains, and alloying. Therefore, 

the bandgap and emission wavelength of the 

LEDs can be manipulated by the introduction of 

vdWHs. This review aims to cover recent 

advances in the field of the application of vdWHs 

in novel LEDs for innovation in display 

technology. 

1.1. 2D Materials Building the Van Der Waals 

Heterostructures 

The mechanical exfoliation of graphene from 

bulk graphite was established by Geim and 

Novoselov [35], and after this trial in 2004, 

research on the synthesis, applications, and 

characterization of 2D materials has developed 

with a fast trend. The 2D materials include a 

broad category of elements such as graphene [36], 

phosphorene [37-39], silicon [40, 41], and 

different compounds such as hexagonal boron 

nitride [42-45], non-metal and metal 

chalcogenides [46-51], hydroxides [52-57] and 

halides [58-61], oxides [62-65], silicates [66-68], 

perovskites [69-71], and covalent organic 

frameworks [72-75]. Fig. 1 shows layered 

materials based on the displayed elements that 

were exfoliated in 2D structures as well as the 

elements of the periodic table that can form 

synthetic elemental 2D materials, and an 

overview of recently synthesized and developed 

2D structures through the epitaxial growth route. 

Still, there exist other crystalline solids from the 

periodic table that have different properties and 

may have the possibility of the creation of single- 

or few-layer polyhedral thick 2D structures [78].  

Fig. 2a shows some of the 2D materials and their 

corresponding 3D structure counterparts. As an 

example, graphene is thermally and electrically 

conductive with high electron mobility of 200000 

cm2V-1s-1 and thermal conductivity in the range of 

1500 to 3000 Wm-1K-1. The graphene has a 

strength of up to 135 GPa, and its elastic stiffness 

reaches 1 TPa. The hexagonal boron nitride 

(hBN) is insulating while phosphorene and MoS2 

are semiconductors [42]. The vdWH of these 2D 

building blocks (Fig 2c-g) can result in exotic 

optical, electrical, and optoelectronic properties 

with applications in sensing [79], energy 

harvesting [80, 81], memory, storage, and 

actuating devices [42]. 

The transition metal dichalcogenides (TMDs) 

with the general formula of MX2 (with M 

referring to a transition metal type from the group 

of 4-7 and X denoting a chalcogen including Se, 

Te, or S) are a category of the 2D materials with 

more than 40 compounds. In the bulk structure of 

the layered TMDs, the interactions between the 

layers are weak van der Waals type while strong 

bondings exist in the layers. Each sheet of a TMD 

includes three atomic layers and two chalcogens 

atomic layers sandwiching a transition metal 

atomic layer between them. Upon isolation of the 

TMD monolayers, the interactions in Z-direction 

will be removed and confinement of the charge 

carriers occurs in only two dimensions (X and Y). 

The charge carriers' confinement will result in the 

changing of the monolayer properties [82]. 

The application of vertical heterostructures in 

optoelectronic devices has several advantages 

including the luminescence obtained from the 

whole area of the device, decreased resistance of 

the contacts, increased current densities which 

result in brighter LEDs, and more extensive 

choices of TMDs (and combinations of the 

TMDs) that are allowed in designing. This 

technology can be used for devices based on 

quantum wells such as LEDs based on several 

QWs, indirect excitonic devices, and lasers [84]. 

1.2. Band-Structure in Van Der Waals 

Heterostructures 

The electronic structure of the solids is described 

by the band diagrams that show allowed energy 

levels within a solid. According to the energy 

level structure, the solids are classified into  

three different electronic structures: metals, 

semiconductors, and insulators [26].  

The interactions in the vdWHs are weak, but the 

electron orbitals of the layers extend to each other 

and have an influence on the electronic band 

structures of the constituent layers [85-91]. 
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Fig. 1.  (a) Highlighted elements of the periodic table that form the common layered and 2D materials. Reprinted 

with permission from ref. [26] 2017 published by Elsevier Ltd. This is an open-access article under the CC BY 

license (http://creativecommons.org/licenses/by/4.0/). (b) The elements of the periodic table can form synthetic 

elemental 2D materials with their corresponding synthesis methods. The elements highlighted in grey are those 

that have not been predicted to form 2D materials and nor have experimentally resulted in synthetic elemental 

2D materials. Reprinted with permission from ref. [76] Copyright 2017 Macmillan Publishers Limited. c) 

Overview of recently synthesized and developed 2D structures through the epitaxial growth route. Reproduced 

with permission from ref. [77] Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

Graphene has a zero bandgap which has limited 

its application in some optoelectronic and 

electronic devices. However, TMDs possess a 

sizable bandgap. The sizable bandgap in TMDs 

has resulted in their applications in electronic 

devices [92-96]. The TMDs have unique 

properties including bandgap transition from 

indirect to direct while being converted to 

monolayers [17, 32, 97, 98], intense light-matter 

interactions, and considerable exciton binding 

energy [17]. 

The TMDs can be used in vdWHs to improve the 

optical and electronic characteristics of the 

resultant heterostructure, compared to the 2D 

material itself. This benefit could happen as a 

result of the interactions that may exist between 

the layers. For example, Peng et al. investigated 

the optical and electronic characteristics of blue 

phosphorene (BlueP)/TMDs vdWHs by the first-

principles calculations based on the density 

functional theory (DFT) [99]. Both the BlueP and 

TMD monolayers are hexagonal crystals and 

hence, can make BlueP/TMDs vdWHs. 

The BlueP/TMDs vdWHs (TMDs= WSe2, WS2, 

MoSe2, and MoS2) show indirect gap. The BlueP 

layer in the heterostructure can be used as the 

electron acceptor, and WS2, WSe2, or MoSe2 can 

be used as an electron donor. The vdWHs of 

BlueP/TMDs show almost an increased optical 

absorbance in the visible range of the spectrum. 

Except for BlueP/MoS2 heterostructure, the band 

edge positions of the stacked vdWHs are located 

between the conduction band minimum (CBM) of 

the BlueP and the valence band maximum (VBM) 
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of the TMDs. Compared to the corresponding 

TMDs monolayers, the bandgaps of the stacked 

heterostructures are smaller. This phenomenon 

implies that the formation of the vdWHs results in 

a decrease in the bandgap values. There is a shift 

in the Fermi level of the BlueP/TMDs vdWHs, 

and this level locates between the VBM of TMDs 

and the CBM of BlueP. 

Furchi et al. showed that the interlayer coupling 

of the TMDs vdWHs is negligible and the bands 

of the heterostructures are the superposition of the 

bands of the monolayers [100]. MoS2 and WSe2 

monolayers were used in a type-II van der Waals 

heterojunction which is electrically tunable. The 

photovoltage in a diode depends on the p-n 

junction. The van der Waals heterojunction 

composed of MoS2 and WSe2 behaves as a diode 

with the photovoltaic effect. By applying a gate 

bias, a thin diode is realized. This device shows 

photovoltaic characteristics in which optical 

illumination results in charge transfer across the 

interface. The MoS2 layer possesses the lowest 

energy electron states, and the WSe2 possesses the 

highest energy hole states, which results in a type-

II heterostructure. 

Direct synthesis of the heterostructure layers 

through techniques such as CVD, instead of 

mechanical stacking, might result in the better 

rotational alignment of the layers and hence, the 

better coupling between the layers can be 

achieved. MoS2, MoSe2, and WSe2 TMDs 

monolayers were used with graphene to construct 

WSe2-MoS2-graphene and MoS2-WSe2-graphene 

heterostructures synthesized by a combination of 

oxide powder vaporization and metal-organic 

chemical vapor deposition (MOCVD) methods. 

 
Fig. 2.  (a) Schematic of some of the 2D materials and their corresponding 3D structure counterparts. Reprinted 

with permission from ref. [42] Copyright 2018 Elsevier Ltd. (b) Examples of 2D structures with metallic to 

semiconductor and insulator characteristics; the long arrow shows the direction of increasing bandgap from left 

to right. (c-g) VdWHs that have been integrated by 2D layered materials with quantum dots and 0D 

nanoparticles (c), 1D nanowires (d), 1.5D nanoribbons (e), 3D materials (f), and 2D nanosheets (g). Reproduced 

with permission from ref. [83] Copyright 2016 Macmillan Publishers Limited. 
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Through growing two different TMD layers on 

multilayer epitaxial graphene (EG, three layers of 

graphene) the heterostructure is constructed. The 

TMDs multilayers show a direct optical bandgap 

(Eopt). The PL spectroscopy in Fig. 3a and Fig. 

3b reveals that electronic coupling has occurred 

between the layers. The photoluminescence (PL) 

spectra of the constructed heterostructures show 

that there are interlayer excitons at 1.59 eV for 

MoS2–WSe2–EG and 1.36 eV for WSe2–MoSe2–

EG. The WSe2–MoSe2 and MoS2–WSe2 junctions 

show type-II band alignment. The holes in MoS2 

(MoSe2) valence band are injected into the 

valence band of WSe2, and the electrons of the 

WSe2 conduction band are transferred to the 

conduction band of MoS2 (MoSe2). The PL peak 

position, which is the result of interlayer exciton 

recombination, is the evidence of electronic 

coupling at the heterojunctions. The scanning 

tunneling spectroscopy (STS) affirms that the 

quasi-particle bandgap of MoS2–WSe2–EG 

hetero structure is smaller than that of WSe2–EG 

(Fig. 3c and Fig. 3d) [101]. 

1.3. Bandgap Tuning of Van Der Waals 

Heterostructures 

All of the single-layer 2D materials are not 

suitable for specific applications, concerning their 

band structures. For example, graphene misses 

having a bandgap, while the bandgap of hBN is 

large for specific optical and electronic 

applications [102, 103]. The vdWHs can alter the 

optical and electronic properties through the 

combining of the monolayers.  

 
Fig. 3.  (a) The PL of WSe2-MoSe2-EG and MoS2-WSe2-EG heterostructures show interlayer coupling, (b) WSe2-

MoSe2-EG and MoS2-WSe2-EG show intrinsic PL peaks corresponding to MoSe2, MoS2, and WSe2 and also show 

interband PL peaks. (c) And (d) STS on EG, WSe2-EG, and MoS2-WSe2-EG illustrates that the bandgap of the double 

junction heterostructure of MoS2-WSe2-EG is smaller than WSe2-EG heterostructure with a single junction. The 

positions of valence band maximum (VBM), conduction band minimum (CBM), and quasi-particle bandgap Eg 

are marked on the diagram [101]. Licensed under a Creative Commons Attribution 4.0 International License. 
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As an example, the electronic quality of the 

hBN/graphene can be increased tenfold compared 

to the graphene [104], MoS2–WS2 for ultrafast 

charge transfer [105], WS2/rGO as a catalyst, etc. 

The TMDs and their vdWHs can be utilized in 

(opto) nanoelectronics and spintronics devices 

due to their semiconductor, semimetallic, and 

metallic characteristics, spin-polarized transport, 

and superconductivity [106-123]. The diverse 

range of electron affinities, workfunctions, and 

bandgaps makes it possible to design vdWHs with 

versatile band alignments [106, 124-135].  

The charge properties and electronic band 

structures of the TMDs depend on the 

coordination environment of transition metal 

atoms and the count of the d-electron. The 

bandgap of some of the TMDs like Mo and W 

dichalcogenide compounds shows a transition 

from indirect to direct by exfoliation. The 

graphene, however, does not show a bandgap, and 

manipulations such as layer stacking or narrowing 

of the lateral dimension are needed to open a gap 

[136].  

In bulk TMDs, the CBM is located near the 

midpoint along Γ-Κ path, and VBM is located at 

Γ point. When the same material becomes a 

monolayer, it would possess a direct bandgap, and 

the CBM and VBM coincide at Κ [136]. The first-

principles density functional theory (DFT) can 

predict the band structure of the materials [137-

141]. The density functional theory calculation in 

Fig. 4a for the ultrathin MoS2 layers and bulk 

MoS2 with different thicknesses showed that the 

layer thickness has not a pronounced effect on 

changing the direct excitonic transition energy at 

the Brillouin zone K point. However, decreasing 

the number of layers leads to an increase in the 

indirect bandgap.  

By increasing the indirect transition energy, as the 

MoS2 becomes a monolayer, the material 

experiences a change into a 2D semiconductor 

with a direct bandgap. For monolayer MoS2, a 

change in a semiconductor with a direct bandgap 

results in krelax= 0, and a jump in luminescence 

that is solely limited by the defect-trapping rate 

kdefect. Single-layer and few layers (two-layers, 

four-layers, and six-layers) of MoSe on both 

Si/SiO2 and quartz wafers were fabricated by 

microexfoliation techniques. The reflectivity 

measurements across visible and near-infrared 

(NIR) spectral ranges showed absorption peaks 

due to direct excitonic transitions at the K point 

(Fig. 4b inset).  

The energy difference of the absorption peaks is 

due to the spin-orbital splitting of the valence 

band. Strong luminescence emissions can be 

recorded at the A1 and B1 direct excitonic 

transitions. The PL that is observed in the 

monolayer of MoS2 is contrary to that of bulk 

MoS2 which miss showing this emission. In 

addition to the broad peak in PL spectra of the 

monolayer, two-layer, six-layer, and bulk MoS2, 

there are three Raman modes: the first peak is 

attributed to a MoS2 Raman excitation with a 408 

cm-1 Raman shift (Fig. 4d). The other peaks are 

also the first and second-order Raman peaks 

arisen by the silicon substrate. For MoS2 few-

layers that local field effects are small, and the PL 

and Raman intensities exhibit opposite layer 

dependence. The Raman signal for monolayer 

MoS2 which possesses a small amount of the 

material is the weakest, while PL is the strongest 

whereas it owns a reduced amount of material. It 

means that compared to the few-layers and bulk 

MoS2, the luminescence quantum efficiency for 

the MoS2 monolayer is higher [142]. 

The changes in the lateral dimensions of the 2D 

TMDs can also alter their band structure and 

optical, and electronic properties. As the lateral 

dimensions of a 2D TMD decrease, a sharp peak 

in its PL spectra might appear which is broad  

and blue-shifted. This effect is similar to  

what is observed in metallic nanoparticles  

and can be attributed to the spatial quantum  

confinement effect that is exerted on the electron 

clouds [136]. 

The tunable optical response over a wide range of 

wavelengths (NIR to visible) can be obtained by 

assembling vdWHs and the formation of 

heterojunctions and homojunction with direct 

bandgap layered compounds of III-VI groups. 

The combination of different semiconductor 

layers and through selecting the p- or n-type 

doping of the constituent layers, different 

potential profiles and band alignments can  

be achieved. As a comparison between 

homojunction and heterojunction diodes, 

homojunction diodes assembled by the layers  

of p- or n-type InSe could show EL at energies 

near the InSe bandgap energy (Eg= 1.26 eV). 

However, layers of n-type InSe and p-type GaSe 

were applied in a heterojunction diode, and  

the device could emit photons at lower  

energies [143]. 
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Fig. 4.  (a) Calculated band structures of MoS2 in the forms of (I) bulk, (II) quadrilayer, (III) bilayer, and (IV) 

monolayer. The lowest energy transitions are depicted by solid arrows. The bulk form of MoS2 shows an indirect 

bandgap. The direct excitonic transitions happen at high energies (K point). By a decrease in the number of layers, the 

indirect bandgap increases, and finally, when the MoS2 becomes a monolayer, a semiconductor with a direct bandgap 

is reached. (b) Reflection difference due to the MoS2 ultrathin layer with a substrate of quartz, which shows to be 

proportional to the absorption constant of MoS2. The peaks at 1.85 eV (670 nm) and 1.98 eV (627 nm) are attributed to 

the A1 and B1 direct excitonic transitions with the energy split from valence band spin-orbital coupling. The band 

structure of the bulk MoS2 is shown in the inset. (c) At the direct excitonic transition energies, strong PL in monolayer 

MoS2 can be detected in which such luminescence cannot be seen in the bulk MoS2 with indirect bandgap. (d) Raman 

and PL spectra of ultrathin samples with different layers of MoS2. For the MoS2 monolayer, the Raman signal is 

weak while the PL is strong. (e) The PL spectra normalized by Raman intensity for ultrathin MoS2 with different 

numbers of Layers. Reproduced with permission from ref. [142] Copyright 2010 American Chemical Society. 
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Applying strains on the vdWHs might be used as 

a tool for tuning the bandgap structure. For 

example, the band edge positions of the ZrS2 

monolayer are not appropriate for water splitting, 

since its CBM is lower than the reduction level by 

0.14 eV, while the CBM of the hBN/ZrS2 is 0.07 

lower than the reduction level. It has been shown 

that by applying biaxial strain (3%) to the 

hBN/ZrS2 heterostructure, the CBM becomes 

0.25 eV more than the H2O reduction level [102].  

Alloying the materials that have different 

bandgaps is a technique for bandgap engineering 

of bulk semiconductors [144]. For example, MoS2 

and MoSe2 are two of TMDs that without the need 

of changing their structure to nanostructured, 

functionalization, or applying a strong field to 

bilayers, have a direct bandgap. Single layers of 

MoS2(1–x)Se2x sheets with an arbitrary S/Se ratio 

have been synthesized which makes it possible to 

tune the direct bandgap between the bandgap 

values of the MoSe2 single layer and MoS2 single 

layer, continuously [82]. 

1.4. Development of Advanced Light-Emitting 

Diodes Based on Materials with Van Der Waals 

Heterostructures 

The photodiodes which are based on the 2D 

materials and van der Waals interactions could be 

considered promising candidates for future 

optoelectronic devices. The p-n heterojunctions 

and homojunctions are conventionally 

synthesized through epitaxial growth and 

chemical doping, respectively [145]. The p–n 

junctions in graphene does not show diode-like 

rectification characteristics due to the Klein 

tunneling effect. The graphene can be used for 

photodetection, but due to its zero bandgap, it 

cannot generate a sizable photovoltage, and 

similarly, the graphene p-n junctions cannot also 

create electrically driven light emission. 

However, other 2D materials that have a bandgap 

can be used for the production of p-n junctions 

[146]. Through the application of 2D materials, p-

n heterojunctions by the aid of van der Waals 

interactions without lattice mismatch can  

be formed. A device consisting of black  

phosphorus-MoS2 based on the van der Waals  

heterojunction was constructed on a surface  

acoustic wave platform. This device exhibited  

photo responsivity of 2.17 A/W (at λ= 582 nm), 

which might be due to the piezoelectric potential 

induced by the surface acoustic waves strain field 

[145]. 

Since the conduction and valence bands of 

graphene meet at the Dirac points, graphene  

is a zero-gap semiconductor. In traditional 

semiconductors, by striking an electron at a 

barrier with a height higher than the kinetic 

energy of the electron, the wave function of the 

electron becomes evanescent within the barrier. 

Furthermore, the wave function of electrons 

decays exponentially with distance into the 

barrier. Therefore, a wider and taller barrier 

results in more decay of the electron wave 

function before reaching the other side. This 

means in a higher and wider barrier, the 

probability of electron quantum tunneling is 

lower. However, if the particles are governed by 

the Dirac equation, if the barrier height is higher, 

the probability for transmission would be more. A 

Dirac electron hitting a tall barrier turns into a 

hole. Then the resulting hole will propagate 

through the barrier. When the carrier is reached 

the other side of the barrier it will turn back into 

an electron. This phenomenon is called Klein 

tunneling. In the case of graphene, the variation in 

chirality leads to a variety in the transmission 

probability that depends on the angle of incidence 

to the barrier. In graphene, the Fermi level is 

always within the valence or conduction bands. 

However, the Fermi level in traditional 

semiconductors, when pinned by impurity states, 

often falls within the bandgap [147]. 

The creation of p-n diodes in TMDs is 

challenging because of the difficulties in selective 

doping into the n- or p-type semiconductors. 

Vertical stacking of the n- and p-type monolayers 

can create a sharp heterojunction p-n diode with 

an atomically thin characteristic. Cheng et al. 

applied the n-type MoS2 few-layers and p-type 

WSe2 monolayer in assembling heterojunction  

p-n diodes [148]. They showed that the 

WSe2/MoS2 heterojunctions exhibit superior 

current rectification characteristics with an 

ideality factor of 1.2. A Si/SiO2 (300 nm) 

substrate was used to synthesize the triangular 

domains of monolayer WSe2. For the production 

of vertically stacked heterojunctions, the MoS2 

flakes were exfoliated mechanically and then 

transferred onto the synthetic WSe2 domains. The 

contact electrodes were synthesized with electron 

beam evaporation and electron-beam lithography 

(Fig. 5a and b). The ideal band diagram of the 

heterojunction is illustrated in Fig. 5c. The  

 [
 D

O
I:

 1
0.

22
06

8/
ijm

se
.3

01
9 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
ed

ic
al

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
14

 ]
 

                             8 / 24

http://dx.doi.org/10.22068/ijmse.3019
https://medical.iust.ac.ir/ijmse/article-1-3019-en.html


Iranian Journal of Materials Science and Engineering, Vol. 20, Number 2, June 2023 

9 

built-in potential is supported by the depletion 

layer, and outside the semiconductor is supposed 

to be neutral. The EL is localized near the 

electrodes since for EL, the forward bias exceeds 

the p-n diode turn-on voltage, and the resistance 

of the monolayer WSe2 is considerable in the total 

resistance. Consequently, the majority of the 

voltage drop happens near the electrodes across 

the heterojunction edge because of the significant 

series resistance of the monolayer WSe2. There 

are thresholds in the EL intensity for different 

injection current spectra (Fig. 5d). An almost 

linear increase in the EL intensity can be observed 

by increasing the injection current. The thresholds 

in the EL spectra might be due to the band 

alignment of the heterojunction by applying 

various values of the bias voltages. As a result of 

different bandgap and band alignments between 

the valence band and conduction band, the barrier 

for hole transport is smaller than the barrier for 

the transportation of electrons across the junction. 

The bandgap in the few-layer MoS2 is indirect  

and hence, leads to a low rate of radiative 

recombination and a low-intensity EL when the 

charge transfer across the heterojunction is 

dominated by the hole injection. If the bias across 

the junctions is increased beyond the electron 

injection threshold, the MoS2 conduction band 

shifts upper, and consequently, both the holes and 

electrons can pass the heterojunction and are 

injected into the n-type and p-type regions, 

respectively (Fig. 5f). The rate of radiative 

recombination in monolayer-WSe2 with a direct 

bandgap is higher than in bilayer-WSe2 with an 

indirect bandgap. 

There have been some efforts for the realization 

of solid-state single-photon emitters for different 

applications. The single defect-bound excitons 

have the potential for application in on-chip 

quantum information as well as nanophotonics. A 

new type of single-photon source is the single 

defect that is localized in the WS2 monolayer 

[149-152]. This type of single-photon source can 

be integrated with different optical components, 

including waveguides [153-155] and crystal 

cavities [156-158].  

Clark et al. constructed an LED as a vertical 

heterostructure which consisted of two exfoliated 

sheets of graphene monolayers as semi-

transparent electrodes, two layers of exfoliated 

BN (2-4 layers each), and a CVD-grown WSe2 

monolayer at the center between the BN layers. 

[159]. by applying a bias to the device, the Fermi 

level rises above the sub-gap defect states. 

Therefore, electrons (holes) can tunnel from the 

negative (positive) electrode over the barrier of 

BN to states in the WSe2, which can be accessed 

by increasing the bias. The carriers that are 

injected from the graphene contacts will remain 

in the WSe2 layer with the aid of the BN layers. 

The carriers can form the excitons as a result of 

Coulomb interactions. Recombination of the 

formed excitons leads to EL from intrinsic and 

defect-bound exciton states of WSe2. Narrow 

emission lines in the EL spectrum of the 

constructed device can be seen which is similar to 

the PL that is derived from the realizing single-

photon emitters in WSe2. Schwarz et al. also 

reported that by applying a vertical electric  

field to a vdWH of graphene/ hBN/ WSe2/ hBN/ 

graphene, tuning by more than 1 meV of the 

emission energy has been demonstrated by the 

defect luminescence [160]. The energy of the 

defect emitter in the device can be fine-tuned by 

changing the bias. The quantum-confined Stark 

effect can be confirmed. 

In a MoS2/WSe2 heterojunction, the possible 

band-to-band tunneling paths can be determined 

by calculation of the band diagram of some 

typical MoS2/WSe2 heterojunctions with versatile 

film thicknesses and charge densities. It was 

concluded that the bandgap of the heterojunction 

at the edge of the overlapped region of p-WSe2 

and n-MoS2 (horizontal direction) is smaller than 

their bandgap in the overlapped region (out-of-

plane direction). However, the charge carriers in 

such vdWHs in both vertical and horizontal 

directions must tunnel through an extra effective 

van der Waals barrier. This barrier is thinner than 

the tunneling distance. Therefore, the main 

crucial tunneling parameter would be the 

tunneling barrier height defined by the effective 

bandgap [161]. 

The application of the magnetic field has a 

pronounced effect on the EL intensity of the light-

emitting vdWHs. In a study, a heterostructure 

consisting of the successive layers of Si/ SiO2/ 

hBN/graphene/hBN/WSe2/hBN/graphene which 

the WSe2 monolayer is the active part was 

constructed. The hBN spacers are two layers thick 

and separate the WSe2 layer from the electrodes, 

which are graphene sheets. A lower EL threshold 

voltage was seen compared to the corresponding 

single-particle bandgap of the WSe2 monolayer.  
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Fig. 5.  (a) A schematic illustration of the WSe2/MoS2 heterojunction device. (b) cross-sectional view of the 

vertical heterojunction, (c) an ideal band diagram of the p-n diode (applying zero bias). (d) The EL intensity vs 

injection current for monolayer- and bilayer-WSe2/MoS2 heterojunction. (e) ideal band diagram of the 

heterojunction applying small forward bias. Under small bias, the electrons cannot cross the junction, but the 

holes can cross and inject into the n-type region. (f) ideal band diagram of the heterojunction applying large 

forward bias, the conduction band of the MoS2 shifts upper and is higher than the conduction band of the WSe2. 

Reproduced with permission from ref. [148] Copyright 2014 American Chemical Society. 

By application of a magnetic field, enhanced 

magneto-oscillations in EL emission intensity as 

a function of the applied magnetic field with a 

direction perpendicular to the plane of the layer 

can be observed [162]. 

The emission of TMDs can be enhanced by the 

application of nano-cavity since this can result in 

spectral and spatial confinement of the light [1]. 

The application of nano-cavity integrated TMDs 

has resulted in strongly coupled exciton-

polaritons at room temperature [163, 164]. The 

light-emitting device with a vdWH consisting of 

graphene/hBN as the bottom, and top contacts and 

WSe2 monolayer as the active light emitter layer 

has been assembled vertically. It was observed 

when a photonic crystal cavity is integrated on the 

top of the assembled heterostructure, the local EL 

enhances more than 4 times. When voltage pulses 

are applied, direct modulation of the EL at a speed 

of approximately 1MHz is demonstrated. The 

cavity-integrated vdWHs could be promising as a 

nanoscale optoelectronic platform [1]. 

The metal-insulator-semiconductor diodes based 

on the vdWHs are a potential platform for 

electrically driven excitonic devices. As an 

example, Wang et al. could assemble the planar 

vdWH LED by a few layers of graphene, hBN, 

and WS2 monolayer [165]. The LED showed a 

high carrier-to-exciton conversion efficiency. The 

realized devices showed excitonic EL with a very 

low threshold current density of a few pA∙μm-2. 

The light emission is due to the injection of hot 

minority carriers (holes) to n-doped WS2 by 

Fowler-Nordheim tunneling, and hBN can 

conduct the hole transport and be used as an 

electron-blocking layer. The WS2 layer is 

responsible for light emission as well as a layer 

for efficient electron transfer. 

The combination of 2D materials with silicon-

based fabrication processes is promising for 

implementing 2D semiconductors in standard 

semiconductor fabrication processes. For 

example, an LED, based on the vertical 

heterojunctions with p-type silicon and n-type 

MoS2 monolayer was realized. The diode 

showing rectification and light emission from the 

entire surface of the heterojunction was 

assembled with interface engineering. The device 

shows a direct bandgap [166].  

Be utilized by the aid of stacked monolayers of 

the 2D materials. The single-photon sources in 

layered materials have several advantages 
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including the ability to work at the limits of 

monolayers; low stray capacitance that makes the 

possibility of reaching high-speed operation; 

compatibility in fabrication with silicon platforms 

which results in their easy incorporation into 

optoelectronic systems; miniaturization and 

potential for fabrication of low-power devices; 

and embedding into photonic structures with an 

improved light-matter interaction. It has been 

reported that a 2D diode for quantum light from 

single-photon emitting sites in WSe2 and WS2 

monolayers has been designed. The applied layers 

were a graphene monolayer, a thin sheet of hBN 

(2-6 atomic layers), and a monolayer or bilayer of 

TMD (WSe2 or WS2) on the top, which all these 

successive layers lie on a substrate of Si/SiO2. The 

configuration of the layers and the optical image 

of this device are illustrated in Fig. 6a  

and 6b, respectively. The vertically stacked 

heterojunction allows EL from the whole area of 

the device. The vertical junction provides the 

designing of the devices which are only limited 

by the flake size and can be functional within an 

area of several microns squared, while the 

thickness is limited to a few atomic layers. The 

EL is generated by applying a bias between the 

graphene monolayer and TMD. The electrons are 

injected into the graphene monolayer tunnel 

through the barrier of hBN and recombination 

occurs at the TMDs, which serves as the hosting 

of single-photon sources. The band diagrams of 

the assembled layers are shown in Fig. 6c. When 

the bias between the graphene monolayer and 

TMD is zero, the system Fermi energy (EF) is 

constant across the heterojunction, and a net 

charge flow between the stacked layers is 

prevented (Fig. 6c(i)). The closer EF to the 

valence band is because of using a naturally  

p-doped crystal for exfoliated WSe2. A negative 

bias raises the graphene monolayer EF above the 

CBM of the grounded WSe2. Therefore, the 

electrons tunnel from the graphene monolayer to 

the WSe2 monolayer. Radiative recombination of 

the tunneled electrons and the holes in the WSe2 

area leads to photoemission (Fig. 6c(ii) and (iii)). 

The graphene monolayer Dirac cone is raised 

through the field effect as a result of the 

accumulation of the negative charges in the layer, 

while the TMD band appears to be lowered by the 

same effect. The differences between the 

operation of LED and quantum LED (QLED) are 

illustrated in Fig. 6c(ii) and (iii), respectively. In 

QLED, single electrons which are tunneled into 

the energy levels of the quantum dots recombine 

with single holes. In LED electrons tunnel 

through and recombine with holes from the band 

edges [167]. 

The quantum wells with a precision of one atomic 

plane can be introduced into vdWHs for specific 

devices. The quantum wells in combination with 

tunnel barriers and other structures can be used 

for band-structure engineering by combining 

different 2D atomic layers. The lifetime of the 

quasiparticles can be increased by the utilization 

of suitable barriers and result in electron and  

hole recombination and photon emission. The 

quantum efficiency of the advanced 2D LEDs can 

be improved by the application of multiple 

quantum wells [84].  

The MoS2 monolayers as the active light-emitting 

material which is sandwiched between hBN as 

tunnel barriers, and graphene electrodes, were 

assembled to realize vdWH of light-emitting 

quantum wells. The constructed heterostructure 

shows enhanced performance at room temperature. 

The external efficiency of 5% is promising for the 

development of optoelectronic components with 

flexibility. Creating multiple quantum well 

devices increases efficiency [168]. Withers et al. 

fabricated LEDs by stacking insulating hBN, 

metallic graphene, and various semiconducting 

2D monolayers [84]. The graphene was used as 

the conductive layer. The hBN was chosen and 

applied as a tunnel barrier, and TMDs as the 

quantum wells. The electrons and holes are 

injected from the graphene electrodes into the 

TMDs layer. The quasiparticles with a long 

lifetime in the quantum wells result in the 

recombination of holes and electrons which 

consequently, emit a photon. By choosing and 

stacking different TMD monolayers (WS2, MoS2, 

and WSe2), the emission over a wide range of 

frequencies could be tuned. The quantum 

efficiency can be elevated via the application  

of multiple quantum wells. Fig. 7 shows 

heterostructure devices constructed with single-

quantum-well and multiple-quantum-wells and 

shows their corresponding STEM images and 

band diagrams. 

1.5. Challenges and Perspectives 

A nanoscale LED is an essential component for 

future integrated nanophotonics, displays, and on-

chip quantum optoelectronics. The nanoscale 
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LEDs can be produced by the stacking of 2D 

materials in vdWHs. This review aimed to study 

the possibility of using vdWHs in fabricating 

LEDs for future optoelectronics devices. Both  

in-plane and vertical heterostructures with 

atomically thin 2D layers have been developed in 

recent years. The vdWHs can construct LEDs 

with different optical characteristics due to the 

varying work functions, electron affinities, and 

band gaps that can be obtained by stacking 

different 2D layers. The electron orbitals of the 

layers in the vdWHs extend to each other which 

will influence their electronic band structure. The 

development of the vdWHs-based nanoscale 

LEDs has encountered some challenges in being 

applicable in ultrathin devices. The precise 

control of the stacking process should be 

resolved. The transfer technology and large-scale 

production of the heterostructures should be 

developed. Crystal defects alter the electronic 

properties of the 2D layers which need to be 

considered in large-scale production for precise 

bandgap tuning. The successful recent laboratory-

fabricated LEDs by utilization of vdWHs and 

possible bandgap tuning beyond the limitations 

which are exerted by the chemical composition of 

the semiconductors show that vdWHs-based 

LEDs are effective in miniaturization of the 

optoelectronics and on-chip devices. The 

application of vdWHs-based LEDs can also result 

in the fabrication of displays with higher 

resolution and lower power consumption. 

 
Fig. 6.  (a) a schematic of the side view of LED, (b) optical image of the designed QLED. (c) band diagram of 

the heterostructure: i) zero applied bias, applying a negative bias leads to tunneling of the electrons from the 

graphene monolayer into the TMD. Radiative recombination occurs ii) in the band edges of the TMD monolayer 

(LED), or iii) in the TMD-QDs (QLED). Reproduced with permission from ref. [167] Copyright 2018 Springer 

Nature Switzerland AG. 
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Fig. 7. Schematic of the hBN/GrB/2hBN/WS2/2hBN/GrT/hBN heterostrucure. (b) Bright-field STEM image of 

the cross-section of the hBN/GrB/2hBN/WS2/2hBN/GrT/hBN single-quantum-well heterostructure (GrB: 

bottom graphene electrode, GrT: top graphene, hBN: hexagonal boron nitride, 2hBN= bilayer hBN), scale bar= 5 

nm. (c) Schematic of the hBN/GrB/2hBN/MoS2/2hBN/MoS2/2hBN/MoS2/2hBN/MoS2/2hBN/GrT/hBN 

heterostrucure and (d) its STEM image, scale bar= 5 nm. (e) Optical image of an operational device (hBN/ GrB/ 

3hBN/MoS2/3hBN/GrT/hBN). The heterostructure area is depicted with a dashed curve, scale bar= 10 μm. (f) 

Optical image of the same device that shows electroluminescence. Vb= 2.5 V, T= 300 K. 2hBN, and 3hBN 

represent the bi- and trilayer hBN, respectively. (g) A schematic of the Si/ SiO2/ hBN/ GrB/ 3hBN/ MoS2/ 3hBN/ 

GrT/hBN heterostructure. (h–j) Band diagrams of the heterostructure are shown in (g) in the case of zero applied 

bias (h), in the case of intermediate applied bias (i), and the case of high bias (j). Reproduced with permission 

from ref. [84] Copyright 2015 Macmillan Publishers Limited. 
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2. CONCLUSIONS 

The vdWHs that are constructed by stacking 2D 

layers have found applications in optoelectronic 

and electronic devices, especially nanoscale 

LEDs. The ultrathin LEDs with generation the 

emission in the range of visible to near-infrared 

can be fabricated due to the possibility of bandgap 

tuning in vdWHs for advanced LEDs. Several 

factors can tune the bandgap of 2D vdWHs 

including choosing different 2D semiconductor 

layers in the heterostructure, applying stress, and 

changing lateral dimensions. The quantum wells 

with a precision of one atomic plane can be 

introduced into vdWHs and single-photon 

sources can be utilized in fabricating on-chip 

LEDs. The vdWHs-based LEDs are effective 

structures in miniaturization of the optoelectronic 

devices and the production of high-resolution 

displays. 
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