Hamzeh Soltanali, Abbas Rohani, Mohammad Tabasizadeh, Mohammad Hossein Abbaspour- Fard, Aditya Parida,
Volume 8, Issue 3 (9-2018)
Abstract
Considering the present business competitive scenario, the automotive industry is under pressure to achieve higher productivity. A high level of performance and quality standard could be achieved through improving the Overall Equipment Effectiveness (OEE) of the equipment in an automotive industry. Thus, the aim of this study is to investigate the
performance measurement through OEE theory in an Iranian automotive industry.
Data and basic information collected from the Computerized Maintenance Management System (CMMS) of the production assembly lines. In this case study, two different assembly lines such Peugeot and Sports Utility Vehicle (SUV) were studied. The results indicated that the indices such availability rate, performance and
quality for Peugeot assembly line obtained an OEE value of 0.99, 0.70 and 0.38, respectively, and, these indices for SUV
assembly line obtained as 0.99, 0.39 and 0.53, respectively. Statistical analysis results of net operating time parameter for two assembly lines revealed that there is significant difference in the confidence level of 5% (P-value < 0.05). In addition,
the OEE index for Peugeot and SUV assembly lines gained 0.27 and 0.21 over a period of one year. Consequently, to improve the OEE in the automotive
assembly lines,
managing the time losses by systematic planning of manufacturing and the implementation of Total Productive Maintenance (TPM) are suggested.
Mr Hossein Khalajzadeh, Dr Vahid Hosseini, Dr Alireza Shaterzadeh,
Volume 14, Issue 4 (12-2024)
Abstract
The engine mounting bracket is connected to the engine on one side and to the car body on the other side. The engine mounting bracket should be designed in such a way to prevent the transmission of vibrations from the body to the engine and vice versa. In addition, one of the tasks of the engine mounting bracket is to bear the weight of the engine and the dynamic and vibrational loads caused by the movement of the car on the road. The engine mounting bracket are generally designed in such a way that they have sufficient fatigue life in a defined range of cyclic forces and fail in the range of high forces caused by an accident in order to minimize the level of damage to the vehicle and passengers. This research will investigate the effect of manufacturing parameters on the fatigue behavior of the aluminum engine mounting bracket. High-cycle fatigue test was taken from the prototypes and based on the results of this test, the prototype was considered unsafe. Therefore, in order to improve the produced part, by removing the factors that cause weakness in the part and strengthening the area in front of the engine mounting bracket, the secondary sample of the engine mounting bracket was produced, but due to the high costs of re-fatigue testing, radiographic test was done of the reinforced areas before testing. Then, fatigue test was taken from the secondary sample. The test results of the modified sample were within the acceptable range.